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ADAPTIVS EXPONENTIAL SMOOQTHING

Fraderick A. Rothe

Internatiornal Relations Research Institute
University of Southern California
Novembper, 1977

The adaptive 2xponential smoothing technique currently in
us2 at the International Belations Research Institute is the
subject of this writing. Developed originally by Herbert
Calhoun (¥McClelland, et. al., 1971) for the WEIS research
endeavor, it is now being rafined and tested for early warnirng
r2search and analysis applications. Not as technical as the
Calhoun report, *this 4discussion seeks to present a clear and
parsimonious s3xplanation of what adaptive exponential
smoothing is and why it is useful for early warning research
in internatioral affairs., The reader is refarred to the 1971
WE2IS report (McClelland, et. al.) for <Calhoun's theoretical
discussion of the techniqua and to Richard Beal's (1977)
application of it to international «c¢risis analysis. For
further theoretical treatment, the kasic work by Brown (1962)
should b2 consult2ad. Wheelwright and Makridakis (1973) give an
exc2llent discussion of its utility in an appli2d managsment
s2tting. First 1s a general discussion of exponential
smoctning and its us2fulness as a forecasting method using
svant/interaction data.

At the International BRelations REesearch Institute,
exponential smoothing is used to analyze event flows; that is,
th2 pattern and dynamics of 2vent,/interactioa data. A basic
concept orienting this analysis is that the presant condition
of the event flow is the bast indicator of what it will be in
th2 future, The independant variable is the event flow at
time T and the depsndent variable is the event flow at time T
. A In conjunction with this concept is ths practical
naed, in monitoring and forecasting, to monitor trends in the
racent past in an effort ¢to "look ahead"™ and project the
tendency of the event flow. Again, event flow patterns in
racent history are probably the best clues for what they will
bs in the near future. Time intarvals usually range from one
w2ek to one month, meaning the predicted value is projected
ah2ad by a small lead time(one to four we=sks). Predicted
values are made for one to three time intervals ahead.
EZxpecnential smoothing seeams vary appropriate for this type of
analysis, whare the current characteristics and the
historically rscent trends in the event flow are most salient
f or projecting future characteristics and trends.

Zxponan+tial smoothing has a central use in modelling
techniquas also, particularly as used by Forrester and his
associates(Forrester, 1961). Al though t he exponential
smootning technique is the same in systems 1ynamics, placing
most 2mphasis on the most recent data points and less and less
on mor2 historically distant data points, ths application is
somewhat differont. Systems dynamics applications smooth data
to bz placed in a mod2l making long term projections.
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Although the systems dynamics exponential smd>othing technigue
is the sam2 3s the smoothing method discussed here, th2
systeas dynamics application of smoothing is not appropriate
for event flow analysis.

Bxponential smoothing is in the ™naive" category of
forecasting technigues discussed by Charles R>0s (1955). Naive
tachniques are unsophisticated and are simple projections.
Tachniques in the naive gqroup are guesses, random methods,
trend projections, and autocorrelation. Expoaential smoothing
is a trend projection technique and clearly belongs in this
catagory. Exponential smoothing is an averaging technique and
is similiar 4in that regard to the well known and frequently
usad moving average method. Both techniques average a
spacifiad rnuaber of previous values in the jata to make the
prediction. The main diffsrence between the two techniques is
that 2xponential smoothing adds weights to the most r2cent
vilues to make the prediction while the moving average
tachnique does not. The basic idea in the smoothing method is
that the most recent value of the data is more critical for
making the prediction than historically remota values.

The chief advantage of the wmoving averiyge techniqu2 is
its simplicity. The pradicted values are the averages of
previous observad values, Disadvantages ar: that it cannot
correct for trends or cyclas, it does not emphasize the most
recent or current observed value, and the entire data sequence
must be stored and used in the calculations. Exponential
smoothing, on the other hand, can <correct for trends and
cycles, does give weight to the most recent observed value,
and does not regquire the eantire data history to be stored for
computations. In addition, although more <complex than the
moving averaq2 tachnique, it 1is still easy to use and
interpret.

Th2 main assumption inherent in both of these forescasting
tachniques is that there 1is some wunderlying pattern in the
values of tha variable to be forecast. Th2 values of th2
variabls represent not only the underlying pattern, but random
fluctuations as well, Both of these =»a2thods seek to
distinquish between the random fluctuations 2r "noise," and
the basic undarlying pattern in the observations of tha
variabla., By "smoothing” the <c¢bservations >f the variable,
extreme fluctuations in the data are eliminatead. The forecast
is based on the smoothed intermediate values. A forecasting
m2thod is succasful if it minimizes the differenca between the
observed and predicted values. This is to say 1 succasful
foracasting techniqus projects tha pattern ia the data fairly
closely to what the pattern actually is. By saoothing the
data and filtering out the noise, the expoaential smoothing
tachnique minimizes the error between the observed ani
predic%=sd values.

In expon2ntial smoothing, random fluctuations are
filtezed out of <he data by averaqgqing and by 2adjusting ths
smoothing coefficient in the axponential smodthing model. By

i
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w2ighting with the coefficient tha2 «current value of the data,
noise 1is filtered out of the data and estimates of the
underlying process can be made. Most simply, exponential
smoothing takes the veighted average of several observed
values, and combines that with the weighted, current observed
value to give the next predicted value of the variable. Below
is the pasic exponential smoothing model.

5 Yit1 = (1-2)Xi + avi

where
a = smoothing coefficient (0 <= a <= 1)
Y = the last exponentially weighted average
X = the current observation in the sequence

A& hypothatical data set will demonstrate how the
tachnique works. Values are placed in the wmodel to generate
the predicted values of the sequence. To get the first
projectad valu=, “he average of the first three data points is
calculated. The data are 43, 28, 35, 37, 22. For this
axample, the smoothing coefficient is set arbitrarily at .1.

43 + 28 ¢« 35 = 106
35.33

o

X
X

values for a({the saoothing coefficient) are included with
the most recent data point to genarate the predicted value.

Yis1l = .9(37) + .1(35.33)
fi+1 = 33.3 + 3.53 J
Yi+1 = 36.83

The same process is followed for the next iteration.

= +9(22) + .1(36.83)
Yi+1 = 19.8 + 3.68
= 23.48

The two calculated values(36.83 and 23.48) are the
projected valu2s for the fourth and fifth time pariods of the
data sequence, The first three time periods have no projected

'3 values since the first three observed values are used t3
i calculate the initial average used in the fourth time period.
Observed and praedicted values are displayed below.

43 .
28 i ®
33 .
37 36.83
22 23.48

Smoothing coefficients are astimated for the data being
analyzed. GExponential smoothing models are not generalizei
for use on any and all data. BEach smoothing nodel is designed
to fi= the data being analyzed. Brown writes that exponential

i RN o X0 B a2 SPRRT- N
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smoothing starts with "good clean data and a reasonable model
to represent the procass being forecast., Ths model is fitteil
to the data; that 1s, the coefficients in the model are
astimat2d from the data available to date. So far, the
problem is a siample curve-fitting problem. The differences
are two. (1) Th2 model should £fit current data vary well, but
it is not important that data obtained a long time ago fit
w=21ll. (2) The computations are repeatad with each new
observation" (1962: 88-89).

A major difficulty is estimating the coefficient value to
put in the mod=2l1l, since a particular method is not availabpl2
for finding the coefficient valua. A well advised technique
is to g2t to "know" the data by analyzing it with descriptiv2
statistics. Once th2 pattern and stability of the data are
xnown, the coefficients can be placed in th2 model, ke2ping
this thought ia wind: "If the forecasts are to be staple and
are to smocth out random fluctuations, we have shown that one
should use a small smoothing coefficient or a large number of
observations in the average....0n the other hand, when on2
wants rapid respons2 to a real change in the pattern of the
observations, then a large value of the smoothing constant is
appropriate"” (Wheelwright and Makridakis, 1573: 118). The best
way to £ind the appropriate coefficient valu2 is on the anvil
of experiment, Different values of the coefficiant should be
triad until the one 1is found that minimizes the difference
betwaen the observed and predicted values.

Up to this point, this discussion has been concerned with
2 single model that fits relatively stable data and is first
order. In the above demonstration, a singlzs wmodel using first
order =2xponential smoothing was used to calculate the
predicted values. First order means the predicted values are
i2rived from <the observed valuess. A problem with first order
2xpon2ntial smoothiny, whatever the smoothing coafficient, is
th2 "smoothed avarages will generally 1lag behind a steadily
rising or falling trend, resulting in a cumulative error in
prediction” (Calhoun in McClalland, et. al., 1971 278).
S2cond order smoothing is used to correct this error by simply
smoothing over the first smoothed averages using the sanme
waiqghzting =schease, This trend correction factor is the
difference betwasn first and s2cond order smodothing. The
sacond ordar avarage is found by smoothing th2 first order, as
follous:

Zi+1 = a¥i + (1-a)zi-1

dhere

smoothing coefficient (0 <= a <= 1)

the last exponantially smodthed average
the second ordar average

N
noun

Second ordar smoothing is d2monstrated below, using the
same nypothetical data as before, and their pradicted first
order values.




e

PAGE 5

ORIGINAL PRECICTED
OBSERVED FIRST ORDER
43 35.33
28 35.33
35 35.33
37 36.83
22 23.48

The first itaration is calculated below.

Z2ivr1 = .9(36.83) + .1(35.33)
Zi+1 = 33.74 + 3.53
Zi+1 = 36.67

No+%e that 35.33 is the average from the first threz
obs2rvad values, In the first iteration, it is used as the
last exponentially smoothed average. The first order average
is used 1in place of the second order average sn the first
iteration also. Iterations following the first are calculated
using +the second order average and the last =2axponentially
smoothed average. The next iteration is calculated below.

Zi+1 = .9(23.48) + .1(36.67)
Zis1 = 21.13 + 3,66
Zi+ 1 = 24.79

Seccad order observed and predicted values followe.

43 .
28 .
35 .
37 36.67
22 24.79

In this hypothetical example, the second order predicted
values are not as close as the first order pradicted values.
The rezason is +that second order smoothes the first order
pradictions, causing second order predictions not to fit the
observed values as closely. Second order smd>othing minimizes
tha cumulation z2rror in first ordar, caused py st2adily rising
or falling trends, however,

Third ordar exponential smoothing can be used also.
Third order is applicable whan no steadily rising or falling
trends are obsarved in the data. Third ordar projected values
are not as clos2 to the observed values as the other orders,
bacause third order smoothas the second order projectei
vilues. Third order smoothing is calculated the same as the
other two, excapt that it uses the last exponantiilly smoothel
sacond order value and tha third order average (after the first
iteration).

In many ways, first order exponential smoothing using on2
mod2l wmay not ba suitable for data used in international
affairs res=arch. First, the data may change substantially
ovar *ime, thus making the initial smoothing model obselete,
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and second, many 2f the changes or sudden perturbations in the
data wmay be substantive and should not b2 discounted as
"noise"” or random fluctuations. Calhoun recognized this (1971:
285-291) and developad four models that are designed to fit
different variations in event interaction data. Calhoun
daveloped these models in response to the basic premise cf
most prediction models. Prediction models are designed to fit
two compon2nts of the data. One component 1is the underlying
pittern, or permanant component, and the othar is the noise,
or random component. Departures from one of these components
in the data, in the form of abrupt shifts or discontinuities,
usually destroy the <reliability of the predictive model.
Discontinuities and abrupt changsas in event/interaction data
are substantiv2 and should be incorporated into the predictive
modals. Through analysis of the discontinuities in the WEIS
data, Calhoun discovered four separate components of the data.
2Each component of <the data is treatad with a separate
axpona2ntial smdoothing model for its unique qualities.
Ther2fore, when a discontinuity in the data is encountered, it
is trsated not as either the permanent or random componeat,
but as a separate substantive component. Another insight of
the notion of diffsrent but not random components in the data
is that much of the randomness in international relations data
"appears to be an integral part of the phenom2na. Attsmpts to
compensate for randomnass or to da-randomize are tantamount %o
throwing away the most essential parts of tha data"(Calhaun in
McClelland, =t., al., 1971:285-286). Other models may be
n2cessary to fit the many variations of the data, or ths
models themselves may have to be adjusted. Admittedly
experimental, the models are:

(1) The moderate up-down fluctuation moda21l:
moderate volume which is relatively autocorrelated.

(2) The random drastic upturn-downturn md>del:
moderate to low volume with isolated peakxs of
three standard deviations or greater.

(3) The gradual monotone upward or downward amodel:
moderate to high volume with a definite treni
componant.

(4) The drastic up-dovwn model : semi-autocorrelatad
with paaks and troughs of two standard daviations
or more,. (Calhoun in McCla21lland, et.al., 1971: 285).

Modsl I is one that occurs frequently in ¢the WEIS data.
It daescribes basically the routine, ongoing, maintenanc2
activity in the systam, .a dyad, or groups of nations. Feds
disturbances occur in the data of this mcdel. One standard
daviation is the operational threshold valu= for the model.
If the standard daviation is s2xc2eded at any point in time,
than another of the smoothing models is invoked. M2321 I is
dz2finsd operatisonally as the model wvhose smoothing parameters,
X and Y(from th2 2arlier part of this writing), cemain within
a range of one standard deviation from on2 point in time to

'h‘--iui-ﬁll‘llllllllllll!l.‘""""E i e
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tha n2xt.

Model 1II is difficult to ©predict. Patterns of data
suitabl2 for this model are infrequent but usually signal
important occurrences, It is designed to <capture departures
from the routine activity of the data. It is based on the
difference between th2 previous observed and predicted values.
Thase differences are detarmined by standard deviations also,
with the difference between the observed values being greater
than three standard deviations and the differenca between tha
pradicted and observed values being less than two standard
deviations.

Model III is much like Model II but requires the data to |
have a definite upward or downward trenrd. If a trend has
occurred over the last four or fewer time periods, the latest
three time periods ares detrended and the smoothing equation is
similar to Model II. If no trend exists, then Yodel 1II is
invokad.

Model IV finally, is a severa case of Model I. Threshold
value size is the <chief difference betvween the two modals.
Yo0d=21 IV tests to see if smoothing parameter X, the difference
batween observed values, is greater than three standard
deviations and parameter Y, the difference between observed
and predicted values, is gqreater than two standard deviations.

Bach data point is tested against these models. 1If the
conditions for a model are met, then its appropriate smoothing
equations are invoked. If the conditions for onz @model are
not m2t, the <conditions for the next are tested. This
procedure continues until one model is 1invoked and the
prediction is made. In this fashion, the basic =2xponential
smoothing techniqua adapts to changes in the data, and invokes
the smcothing model that fits the characteristics of the data.

An example of the output from the adaptive exponeatial
smoothing program in use at the 1International Relations
¢ Rasearch Institute 1is presented shortly, but first the
: | opsrational forms of the four moda2ls are givea.

¢ igi
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MODEL CONDITIONS
I. Moderate Up-Down IFl <= 1a and |P| <= 1a
II. Isolated Drastic Upturn |F{ =>3 a and |P] <= 2a
or Dosnturn
IlI. Gradual Monotone (JF} => 1a or |F] <= 3a) and
Up and Down (1P| => 1a or |P| <= 2a)
IV. Drastic Up=~Down 1F| > 3a or P} > 2.5a
where (Xi - Xi-1)
: (Ti - Xi)

standard deviation
observed value
predicted value

< >Xe o
oo on

Below is the output taken from a PLI program wcitten by
the author and Richard S. Beal. It is a3 descendant of
Calhoun's PLI/CPS interactive program and 3eal's BASIC
lanquage program. The Jata are from Professor Charles
McClelland's EFI33 Index. The Event Flow Indicator (EFI),
varsion 33, was developed by McClelland to be used for
monitoring and e2rly warning. It is a measure based on th2
volum2 and variety of activity in the international systen.
After considerabple experimentation McClellani has settled on
using eigqht of the major event(COMBEVENT) categories, out of
th2 possible 22 in the WEIS <collection, for the EPI
calculations., McClelland(1976) has demonstrated that when the
EFI score drops Dbelow 500, thare is a dangerous situation in
the international setting. Scorass from approximately 530 to
500 are interpretad as possible precursors or eartly warning of
dangerous situations. The obsarved values in the example are
EPI33 scores, calculated from The TIMES of London data on a
w22kly basis, beginrning on January 2, ard ending an October 1,
of 1977.

——

(s




- PAGE 9
DATE TIME MODEL OBSERVED ESTIMATE RESIDUAL ARESIDUAL
770108 1 0 686.80 0.00 0.00 0.00
770115 2 0 684.10 0.00 0.00 0.00
770122 3 0 596.30 0.00 0.00 0.00
770129 4 2 614.30 700.32 ~-86.02 -14.00
770205 5 3 586.20 568.31 17.89 3.05
770212 6 1 559.20 575.49 -16.29 2.9
770219 7 1 560.60 55C 67 9.93 1.77
770226 8 2 604.70 476.37 128.33 21.22
770305 9 3 566.70 543.09 23.61 4.17
770312 10 2 643.20 498.14 145.06 22.55
770319 1 3 686.20 621.24 64 .96 9.47
770326 12 3 596.60 714,32 -117.72 -19.73
770402 13 3 643.80 581.74 62.06 9.64
770409 14 3 579.00 637.30 ~58.30 -10.07
770416 15 3 602.50 541.83 60.67 10.07
770423 16 3 620.80 567.13 53.67 8.65
770430 17 3 573.60 604 .45 ~30.85 -5.38
770507 18 2 675.00 535.41 139.59 20.68
770514 19 3 641.9C 692.23 ~50.33 -7.84
770521 20 3 520.70 663.57 -142.87 -27.44
770528 21 3 579.80 459,29 120.51 20.79
770604 22 3 589.70 526.15 63.55 10.78
770611 23 3 552.00 558.54 -6.54 -1.19
770618 24 3 582.60 505.47 7713 13.24
770625 25 3 611.90 550.43 61.47 10.05
770702 26 3 626.20 608.75 17.45 2.79
770709 27 3 653.80 642.30 11.50 1.76
770716 28 1 659.00 656 .97 2.03 0.31
770723 29 2 528.00 698.78 -170.78 -32.35
770730 30 3 535.8C 488.95° 46 .85 B8.74
770806 31 3 597.80 469.29 128.51 21.50
770813 32 3 564.10 3712.92 -8.82 ~1.556
770820 33 1 558.50 561.98 -3.u8 -0.62
770827 34 1 552.60 555.60 -3.00 -0.54
770903 35 2 593.70 521.74 71.96 12.12
770910 36 3 628.50 585.68 42,82 6.81
770917 37 3 603.50 654.02 =50,52 “ 837
770926 38 3 643.50 622.69 20.81 3.23
771001 39 2 512.80 680.76 -167.96 «32.75
771008 40 3 0.00 474,43 0.00 0.00
771015 41 3 0.00 716.21 0.00 0.00
771022 42 3 0.00 418.25 0.00 0.00

No models are invoked and no estimates are made for ths
first ¢three time periods. As in the above example, values for
the first thr22 +¢ime periods are used to calculats the initial
average for the predicted (ESTIMATE) value in time period 4.
Observed valuss for time periods 2, 3, and 4 are used to make
th2 prediction in time period 5 and so on.

Calhoun realized that exponential saoothing, is 1
curve-fit+ing <techniqua, did not make prd>jections ahead.
This means that after the initial average was calculated from
the first thra2e observad values, the fourth observed value was
usei to calculate tha first predicted value, also in th2

e,
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fourth <time vperiod. Calhoun altered this so the third
observed value is used, after the calculation of the average,
to calculat2 the first predicted value in the fourth time
pariod. Calhoun's smoothing technique is designed to fit tha
pattern of the data and to project the next value. Therefore,
in timne period 40, the predicted value (ESTIMATE) is calculated
from the observed value in time period 39. Tim: periods 40,
41, and 42 contain no obserwved values because the data ended
in time period 39. Predicted values are still made by
i1ssiganing the ESTIMATE value from time period 40 to OBSERVED
time period 40. This is used to <calculate the ESTIMATE in
time p2riod 41. Tha same procedure 1is followed for the
jasira2d amount of predictions.

Mcdel 2 1is the model invok2d in time period 4. It's
conditions are calculated in the following fashion.

770101 686.8
770115 684.1
770122 696.3

MEAN(M) = 689.06
STANDARD DEVIATION({SD) = 5.21
P 689.06 - 696.3 = 7.24

Both th=2 mean and the standard deviation are calculated
in moving groups of three. From the earlier discussion, F is
the difference between OBSERVED(T) and OBSERVED (T-1), and P is
the diffarence between ESTIMATE(T-1) and OBSERVED(T-1). The
program calculatas ¢thesa in '"absolute® differences, thus
eliminating all nsgative values.

Model 3 is invoked in time period 5 and the calculations
of its parametars are displayed b=lovw.

770115 684.1

770122 696.3

770129 614.3

M = 644.9

SD = 36.13

F = 586.20 -~ 614.30 = 28.10
P = 700.32 -~ 614.30 = 86.02

Finally, calculations for parametars in time pariod 6 and
Model 1 follow.

770122 696.3

770129 614.3

770205 586.2

M= 632.27

SD = U6.71

P = 559.20 - 586.20 = 27.00
P = 575.49 - 559,20 = 17.89

e e i
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Calhount's smoothing equations are developed, throuqga
tasting simulated data and intuition, to fit the uniqu2
qualities of event/interaction data. The different gJualities
are represented by the four models. The equations usad in ths
PLI pcogram ar2 not 2xactly like those discussed at the ocutset
of this paper, bput are designad to make the best fit(minimiz=
arror) for each of the modals., Calhoun experimented with and
tosted the models until he found these four, which rspresent
the four different components of the data. Calhoun developed
his smoothing 2quations based on the work of sthers (Calhoun in
McClelland, =2t. al.,, 1971:295). He tailor2d his equations
with a correction factor that adds >r 3Subtracts a
predetermined amount from the previously smoothed average.
Carrection of “he data was suggested by the constant movement
in the values of the data over successive <+time periods. Th2
smoothing =2quations 1ire prasanted here in their operational
form. Tha main smoothing equation for first order is given
first, followed by its extension for each of the models.

FNA = (.9 * OBSERVED(I-1)+ (.1 * ESTIMATE (I-1))
FNB = (.1 * FNA ) + (.9 * NEWMEAN)
MODEL I
ESTIMATE (I) = PNA + (.1 * (FNA -~ FNB))
MODEL II
ESTIMATE(I) = FNA ¢ (.9 * (FNA - FNB})
MODEL III
ESTIMATE(I) = FNA + (.9 ¥ (FNA - FNB))
MODEL IV
ESTIMATE(I) = FNA + (.3 * (FNA - FNB))

FNA and PNB are variables used *to hold the results of the
aquations, and I is the time period. For example, in th2
first iteration I is 2qual to U4 because ths orediction is for
time period 4. NEWMEAN is the new moving average calculated
for =esach new group o9f three time periods. The first two
2quaticns ar2 computed for every iteration through the data.
Thay are then placed inthe equation for each mddel and the
predicted value comes from these equations. Important here is
the calculation for second order smoot hing. FNB is
substituted £for NEWMEAN, ¢thus smoothing over the first
average. The first two equations then look like this.

FNA
FA\B

(9 * OBSERVED (I~1)+ (.1 ¢ ESTIMATE (I-1))
(«1 * FNA) + (.9 * FNB)

The first equation, PNA, is the reqular smoothing
aquation, identical to the one displayed in the beginning of
“ha papar. Equation FNB vas developed by Calhoun to further
smooth *he data and was derived from his exparimentation with
tha WEIS data. This basic smoothing proceducre is tailor mad=2
for ths WEIS collaction, thus fulfilling the rajor requirement
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of 2xponantial smoothing to fit the data being analyzed.

Examples o2f the calculations for time periods 4, 5, and 6
of the 2xample follow. Thes=2 calculations ware done by hand
with the aid of a hand calculator, and they are not as
accurate to th2 1last decimal as the calculations donz by th2
computer.

TIME MODEL OBSERVED ESTIMATE

1 686.80 689.07
2 684.10 689.07
3 696.30 689.07
) 2 614.30
5 3 586.20
6 1 559.20

Mtodel numbers are from the earlier calculations and tha
ESTIMATE values are the mean for the first three time periods.
PNB i3 calculat2d twice in the first iteration because this is
sacond order. After that, FNB is placed in the calcilations
from the previous time period.

Pirst iteration for Time Period 4:

FNA = .9(696.3) + .1(689.07)
= 626.67 + 68.907
693.577
FNB = .1(695.577) + .9(689.07)

69.577 + 620.163
689.720

FNB is calculated again on the first iteration.

FNB «1(695.577) + .9(689,720)

69.577 + 620.7u8
690,325

Model II is invoked in time period 4.

[/}

ESTIMATE = 695.577 + .9(695.577 - 690.325)
= £95.577 + .9(5.251)
= :35.577 + 4.726

100,30

Second itaration for Time Period S:

FNA = .9(614.3) ¢+ .1(700.30)
= 522.87 + 70.03

622,30
FNB = . 1(622.90) ¢ .9(690.325)

= 62.29 + 621.293
683,583

dedel IITI is invoked for time period 5.
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622.90 + .9(-60.683)
622.90 - 5S4.614

368.28

Third iteration for Time Period 6:

o

FNA = .9(586.2) + .1(568.28)
527.58 + 56.828

584,408

.1(584.408) + .9(683.583)
58.440 + 615.224

613,665

Model I is invoked for time period 6.

F NB

ESTIMATE S84.408 + .1(584.408 - 673.665)
584.408 + .1(-89.257)

584.408 - 8.925
575,48

It bears repeating ¢that the OBSERVED value used in each
calculation is from the previous time perisd. On the last
itsaration, the OBSERVED is 696.3, from the third time period,
us2d for <calculating the ESTIMATE value in the fourth time
period. The final wunderlined figure for each example is the
predicted (ESTIMATE) value for each of ¢th2 time periods.
Except for the last decimal places, these values are identical
to those calculatad by the computar in the above axample.

honon

Residuals ara used to analyze how closely the predicted
vilues rfit tha observed values. In time period four, <th2
rasidual is -86.02, but it is difficult to interpret what the
-86.02 means unlass it can be compared to other residuals.
For this reason, the %RESIDUAL value was added. %RESIDUAL is
calculated by dividing the residual by the observed value and
multiplying the quotient by 100. Time period 4 is calculated
balow as an example.

%RESIDUAL = (RESICUAL/OBSERVED) * 100
ARESIDUAL = (-86.02/614.3) * 100
RRESIDUAL = =-,14 * 100

#RESIDUAL = =-14.00

ZRESIDUAL gives the percent difference between th2
obsz2rved and pradicted values. While -86.02 appears to be a
large "miss" for time period U4, the RRESIDUAL indicites the
ESTIMATE value "missed™ the OBSERVED value by only ~14 percent
of the observed value. Notice the largest ARESIDUALS (-32.25
and =-32.75) acre in time periods 29 and 39. The ESTIMATE
values for these time periods can be interpreted as "fitting”
133% of the OBSERVED value. It ssems then that this technique
is fairly ‘'"succassful." In this example at least, the
ESTIMATE values predicted to aprroximately plus or minus 30%
of th2: observad values at the very worst. Accuracy of this
typ2 may not always hold, and further testing of the technique
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is necessary, but this first example with "real" dJdata does
sarve as a source of ancouragement.

Confidence in the technique is enhanced even more by the
calculation of another percentage., As each %RESIDUAL 1is
calculated, it 1is chacked to se2 if it is equal ¢to or less
than absolute 20.00. The time periods for this occurrence2 are
tabulated. Th= total is divided by the number of time periods
where a %RESIDUAL is calculated. In this example, there are
36 of 42 we2ks, excluding ¢the first and last three, wvwith a
%RESIDUAL, and of that total, 28 weeks had ARESIDUALs of 20.00
or la2ss. This means that, for this example, th2 ESTIMATE
vilues predicted, accounted for, or fitted, plus or minus 20
parcent of the OBSERVED values 77 percent of the time. For
this data, if the general pattern continues, th2 analyst can
hava 77% "confidence,” or be 77% "“sure" that the next observed
value has been predicted within 20% over or wundar its actual
value by the ESTIMATE valu2,

Application of this "confidence"™ value may be of
particular us2 for forecasting several tim2 periods ahead.
Time pariods 40, 41, and 42 seem to fluctuate gquite wildy, due
pa2rhaps +to the calculation procedure. Experience with the
data indicat=2s that such fluctuatiors are extramely
uncharacteristic and that the predicted values should be
tampered., Since 80% to 120% of the OBSERVED values are
pr2dicted 77% of the time, it may be advisable to add 20% of
th2 ESTIMATE to the ESTIMATE if it is low or subtract 20% of
th2 ESTIMATE from the ESTIMATE if it is high. Unrefirned and
intuitive, this measur2 produces ESTIMATE values of 569.31 for
time period 40, 592.97 for 41, and £01.89 for the final time
period, 42. Thase values appear more in line with the pattern
of th= data. :

In reqgression analysis, the standard errdor of estimate is
us2d to determina prediction accuracy. As is w2ll known, it
may be interpretad as an average residual, or the average
arror in the regression analysis. A standard error of
23timatz is calculated for the exponential smdoothing technigue
for the same purpose, In exponeatial smcothing, the standard
arror of sstimate is calculated using only those time periods
that have both observed and predicted values. In the abov2
axampls, both the first three time periods and the last three
time periods are excluded from the computation. The first
thrze are excluded because they have no predictad values and
the last +*hree are not included since they have no observed
vailues. In this example, the standard error of estimate is
81.03.

Not only is this a confidence measure used to see how
closely the predicted values fit the observed values, but it
is a good measure to use for refining the smoothing technigue.
As diffzraent smodthing coafficients are tried, and different
numbers of observations are used for the moving average, this
m2asur2 can b2 comparad over the different trials wuntil the
bast fit is found.
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Th2 standard error of estimate can also pe used to adjust
tha values foracasted several time ©periods ahead. Tk . is
certainly mores rigorous than the method described previously
and can be used in the same fashion; that is, add the standard
arror of estimate to lov predicted values and subtract it from
high predictad values. This givas values of 555.46 for time
period 40, 635.18 for time period 41, and 499.28 for the last
time period. ;

An additional aspect of the adaptive exponential
smoothing technique 1is its hauristic guality. Not mentioned
earlisr, it is exercised under the MODEL heading in the
axample. Observing, tabulating, and analyzing the pattern and
fraquency of the different models may indicat2 sequances of
action. Each of the models is 1invoked wunder specific
conditions, so the model numbers themselves indicate rough
charactaristics of the data. BRepetition of the sequences, if
any are found, particularly before and aftar known historical
occurrenc2s, may lead to classification schemes for the
saquences and investigation of the factors coatributing to th2
saguances. Big power involvem2nt, regional disturbances,
total number of actors acting, total event volume, total
number of targets receiving, different events =2nact=2d in
virious orders, and changes, differences, and catios among
some or all these factors may contribute to understanding how
troublesome, dangerous situatioms, requiring early warning,
epmerge and dissipate. :

To bagin the summary of ¢this paper, the difference
batwean rsqular and adaptive exponential smoothing is stated
once again. Regular exponential saoothing us2s the same
axponantial model for the entire history of the data.
Adaptive =2xpon2ntial smoothing, however, invokes a different
model, one of four in the technique described ha2r2, for each
value in the data saquence.

Tha strengths 9f second order adaptive exponential
smoothing in international relations research are these,
First, and not mentioned ©praviously, exponantial smoothing
does not require "“rich" data that other 1longitudinal
tachniques, like time=-saries analysis(=2.q., Hill in
McClelland, et.al., 1971), reguire to be useful. Exponential
smoothing techniques can be used on any data collected at tha
same intarvals ovar time. Given the difficulties with getting
"Jood" data in international affairs, this aspect 1is
appealing.

Second, exponential smoothing 1is easy to use and
interpret. I+t is necessary only to fit the smootaning model t>
the data. This 1is done in an experimental <fashion until the
modal is succesful. A succesful model reduces 2rror as much
as possible bestween the observed and predicted values.

finally, adaptive a2xponential smoothing accounts for
parturbatiorns in the data and does not discount them as noise.
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Adaptive smoothing attempts to capture tha sudden, ani
substantive changes in the data by using different smoothing
modals. This requires the analyst to krnow the data and t>
davalop models according to the demands of the data. The four
models discuss2d Dbriefly here have proven fiairly successful,
but *hey may Dbe adjusted or eliminated as morz successful
models are davaloped.

Becaus2 of thessa properties, the techaiqu2 sesms well
suit=2d for early wvarning research. It can be used for
analyzing a dyad's activity or it <can be used for analyzing
total volume in the systea. In addition to pradiction, th2
adaptive technique <c¢an be used for monitoring by observing
which mod=2ls are invoked over time and in what order. Periods
of time with several different models may be studied mor2
closely to dstermin2 what circumstances are present in the
system, causing the various models to be invoked.

Adapting to fluctuations in the data seems to be the most
appealing aspect 2f this typa of smoothing for =arly warning
rasearcch, But forecasting the dynamic o°f international
affairs is not without considerable difficulty. If analysts
of international affairs knew why the affairs moved through
time as they do, then the forecasting difficulty would be
considerably diminished. Until that knowledge 1is developed,
howevar, accumulating understanding on how international

ffairs work is essential. The heuristic Jualities of the
tachnique discussed here lend themselves tc that task.
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